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Abstract 
An improved method to estimate net pay from seismic attributes is presented.  The outline of 
the process is: 

• Tune seismic response to reservoir property using extended elastic impedance theory 
• Apply coloured inversion and extract average amplitude and time thickness attributes 
• Model tuning response of wavelet, detune and calibrate attributes 

The algorithm is validated by testing on synthetic data derived from power-law based 
geological models. 
 
Introduction 
The derivation of net pay estimates from seismic attributes is a technology that has been 
around for quite a while (Brown et al, 1984).  It has been applied much more widely in recent 
years and is now an important tool for many geoscientists.  This has been driven largely by 
the need to reduce appraisal well count and development well failures particularly in 
expensive deep-water environments and has been facilitated by continuous improvements in 
seismic data quality.  In many parts of the world seismic net pay estimates are routinely used 
for assessing in-place volumes, targeting wells and providing input for reservoir models. 
 
Techniques for estimating net pay from seismic divide into two broad categories.  Full 
inversion involves processing the seismic to absolute impedance, or multiple impedances, 
which can then be calibrated to the desired reservoir property (e.g. Vernik el al, 2002).  It is 
usually assumed that wavelet effects have been removed.  The second approach is based on 
the conditioning and calibration of attributes extracted from stratigraphic horizons usually 
from bandlimited data such that wavelet effects will not have been removed.  This 
presentation is concerned with the latter technique. 
 
Earlier attribute methods generally used trough and peak time separation and amplitude 
values extracted from zero phase data and assumed a simple two lithology “box-car” acoustic 
impedance profile (Hanna et al, 1991).  These become increasingly unreliable as the gross 
interval increases beyond tuning requiring an assumption that the net pay is uniformly 
distributed across the interval and they become more difficult to apply for more complex 
impedance profiles (Neff, 1993).  Interval attributes derived from band-limited impedance 
data were increasingly used in the 1990’s (Hanna et al, 1996) however very little has been 
reported on the details or the accuracy of these approaches. 
 
It is generally difficult to assess the accuracy of these methods.  The ultimate test is of course 
in predicting the net pay of a well penetration. However, there are many sources of error in 
this; seismic noise, variable rock properties, wavelet non-stationarity, relative well to seismic 
positioning etc. making it very difficult to objectively assess the quality of the net pay 
algorithm itself.  Such arguments also apply to inversion based approaches. 
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Method 
A combination of recent developments has now allowed some progress to be made to 
overcome some of the limitations and drawbacks listed above.  These are; 

1. Extended elastic impedance technology to control the impedance profile 
2. Coloured inversion (CI) to improve control of the wavelet spectrum 
3. Power law geology models to provide more realistic synthetic datasets to assess 

accuracy and optimise algorithms 
 
Extended elastic impedance theory (Whitcombe at al, 2002) provides a method to increase the 
correlation of the impedance profile with a reservoir property such as a gamma ray curve 
(Neves et al, 2004).  This simplifies and improves the accuracy of the net pay inversion 
process and it also potentially allows selection between fluid and lithology data for net pay or 
net rock volume computation (Connolly et al, 2002). 
 
The objective of coloured inversion (Lancaster & Whitcombe, 2000) is to shape the spectrum 
of the seismic data to have the same “colour” as the geology, within the seismic bandwidth, 
thereby ensuring that the wavelet spectrum is flat.  The resultant trapezoidal wavelet spectrum 
optimises resolution and allows the tuning response to be more easily modelled. 
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Figure 1. The algorithm detunes the average amplitude response of a 100% net to gross wedge 
(left) using a correction function (centre) modelled from the wavelet specification to estimate 
the seismic net to gross (the net divided by the seismic interval). 
 
The net pay algorithm works by correcting average amplitude to seismic net-to-gross, which 
is the total net divided by the seismic gross interval (fig.1).  The average amplitude and time 
thickness are extracted between zero crossings of colour inverted data (fig. 4).  The correction 
function is calculated by dividing the seismic net-to-gross by the average amplitude, both 
modelled based on a 100% net-to-gross wedge. The correction is scaled using a combination 
of self-calibration (fig. 2) and well calibration and is then applied to attributes extracted from 
real CI data.  The method assumes that net-to-gross is proportional to average amplitude 
between zero and the 100% tuning curve. 

 
 
 
 
 
 
 
Figure 2.  Self-calibration is performed by scaling 
the modelled tuning curve to fit the envelope of the 
average amplitude / gross interval crossplot.  This 
assumes that points on the envelope above tuning 
have a net-to-gross of one.   
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Validation 
The application of power law geological models provides more accurate synthetic datasets on 
which to test and optimise net pay estimation algorithms.   The linear spectra of reflectivity 
series with positive gradient (Todoeschuck, 1990) and the corresponding linear negative 
gradient of impedance spectra (Stefani & De, 2001) have been recognised for a while.  Both 
of these are consistent with a power law distribution of bed thicknesses which has also been 
noted many times (Malinverno, 1997) and all of these observations are consistent with the 
coloured inversion model. 
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Figure 3. Analysis of a VShale curve to compute the sand and shale fractal dimensions 
 
More detailed analysis of log data shows that in binary systems the two lithologies will 
generally have different fractal dimensions (fig. 3).  This is not surprising given the different 
depositional mechanisms of, for example, pelagic shales and turbiditic sands, and the equally 
unsurprising implication that thick shales are usually more common than thick sands.  Using a 
twin power law model and fractal dimensions measured from real log data it is simple to 
generate multiple synthetic logs with arbitrary gross interval and net to gross.  From these, 
synthetic CI traces can be generated (fig. 4) and any net pay estimation technique tested. 
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Figure 4. Example of an artificial impedance log and corresponding CI synthetic based on a 

twin fractal model.  The method described here uses average amplitude extracted between zero 
crossings as shown on the right 

 
A Monte Carlo type statistical analysis of the performance of any algorithm can be carried out 
using this approach.  Sensitivities to noise, impedance variability, picking error, wavelet 
specification error etc. can all be investigated and compared with alternative algorithms.  Such 
an analysis shows that average amplitude attribute performs better than alternatives such as 
average negative amplitude (fig. 5).  Accuracy decreases as the gross interval increases but 
can give useful results over intervals containing multiple loops.  The algorithm has also been 
tested on real datasets. 
 
Summary 
An improved method of net pay estimation is proposed based on detuning and calibrating 
average amplitude extracted from coloured inversion seismic data.  The seismic must be first 
processed to ensure the corresponding impedance profile correlates with the desired reservoir 
property.  The algorithm has been extensively tested on real and synthetic datasets based on a 
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“twin fractal” earth model.  Results suggest that this method is more accurate than other 
attribute based techniques and can give reliable results for a wide range of conditions. 
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Figure 5. The relationship between two attributes, average amplitude and average negative 
amplitude, and net to gross for a fixed gross interval of 120ms.  Each point represents the data 
from one realisation as shown in figure 4.  This shows that whereas the average amplitude 
relationship remains linear with some scatter, average negative amplitude becomes non-
unique.  The 100% net to gross realisations are highlighted. 
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